
DISCRETE SEMICONDUCTORS

Product specification Supersedes data of 2002 Feb 05 2002 Aug 06

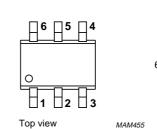
BGA2709

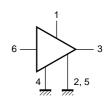
FEATURES

- Internally matched to 50 Ω
- Very wide frequency range (3.6 GHz at 3 dB bandwidth)
- Flat 23 dB gain (DC to 2.6 GHz at 1 dB flatness)
- 12.5 dBm saturated output power at 1 GHz
- High linearity (22 dBm OIP3 at 1 GHz)
- Unconditionally stable (K > 1.2).

APPLICATIONS

- · Cable systems
- LNB IF amplifiers
- · General purpose
- ISM.


DESCRIPTION


Silicon Monolithic Microwave Integrated Circuit (MMIC) wideband amplifier with internal matching circuit in a 6-pin SOT363 SMD plastic package.

QUICK REFERENCE DATA

PINNING

PIN	DESCRIPTION
1	Vs
2, 5	GND2
3	RF out
4	GND1
6	RF in

Marking code: E3-.

Fig.1 Simplified outline (SOT363) and symbol.

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
Vs	DC supply voltage		5	6	V
I _S	DC supply current		23.5	-	mA
s ₂₁ ²	insertion power gain	f = 1 GHz	22.7	-	dB
NF	noise figure	f = 1 GHz	4	_	dB
P _{L(sat)}	saturated load power	f = 1 GHz	12.5	_	dBm

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _S	DC supply voltage	RF input AC coupled	_	6	V
I _S	supply current		_	35	mA
P _{tot}	total power dissipation	$T_s \le 90 \ ^{\circ}C$	_	200	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	operating junction temperature		_	150	°C
PD	maximum drive power		_	10	dBm

CAUTION

This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport and handling. For further information, refer to Philips specs.: SNW-EQ-608, SNW-FQ-302A and SNW-FQ-302B.

BGA2709

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-s}	thermal resistance from junction to solder point	P_{tot} = 200 mW; $T_s \le$ 90 °C	300	K/W

CHARACTERISTICS

 V_S = 5 V; I_S = 23.5 mA; T_j = 25 $^\circ C$ unless otherwise specified.

SYMBOL PARAMETER		CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _S	supply current		19	23.5	32	mA
s ₂₁ ²	insertion power gain	f = 100 MHz	21	22.2	23	dB
		f = 1 GHz	21	22.7	24	dB
		f = 1.8 GHz	22	23.0	24	dB
		f = 2.2 GHz	21	23.0	24	dB
		f = 2.6 GHz	20	22.1	23	dB
		f = 3 GHz	18	21.1	22	dB
R _{L IN}	return losses input	f = 1 GHz	9	11	-	dB
		f = 2.2 GHz	9	11	-	dB
R _{L OUT}	return losses output	f = 1 GHz	17	20	-	dB
		f = 2.2 GHz	20	24	-	dB
s ₁₂ ²	isolation	f = 1.6 GHz	31	33	-	dB
		f = 2.2 GHz	34	36	-	dB
NF	noise figure	f = 1 GHz	-	4.0	4.4	dB
		f = 2.2 GHz	_	4.4	4.9	dB
BW	bandwidth	at s ₂₁ ² –3 dB below flat gain at 1 GHz	3.1	3.6	-	GHz
К	stability factor	f = 1 GHz	1.3	1.7	-	_
		f = 2 GHz	1.8	2.2	-	_
P _{L(sat)}	saturated load power	f = 1 GHz	11	12.5	-	dBm
		f = 2.2 GHz	5	7.5	-	dBm
P _{L1dB}	load power	at 1 dB gain compression; f = 1 GHz	7	8.3	-	dBm
		at 1 dB gain compression; f = 2.2 GHz	3	5.4	_	dBm
IP3 _(in)	input intercept point	f = 1 GHz	-3	-1	-	dBm
		f = 2.2 GHz	-7	-9	-	dBm
IP3 _(out)	output intercept point	f = 1 GHz	20	22	-	dBm
		f = 2.2 GHz	12	14	-	dBm

BGA2709

APPLICATION INFORMATION

Figure 2 shows a typical application circuit for the BGA2709 MMIC. The device is internally matched to 50 Ω , and therefore does not need any external matching. The value of the input and output DC blocking capacitors C2, C3 should be not more than 100 pF for applications above 100 MHz. However, when the device is operated below 100 MHz, the capacitor value should be increased.

The nominal value of the RF choke, L1 is 100 nH. At frequencies below 100 MHz this value should be increased to 220 nH. At frequencies above 1 GHz a much lower value must be used (e.g. 10 nH) to improve return losses. For optimal results, a good quality chip inductor such as the TDK MLG 1608 (0603), or a wire-wound SMD type should be chosen.

Both the RF choke, L1 and the 22 nF supply decoupling capacitor, C1 should be located as closely as possible to the MMIC.

Separate paths must be used for the ground planes of the ground pins GND1, GND2, and these paths must be as short as possible. When using vias, use multiple vias per pin in order to limit ground path inductance.

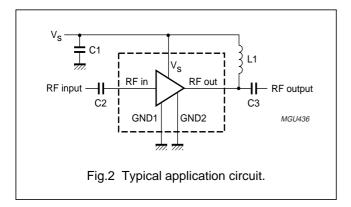
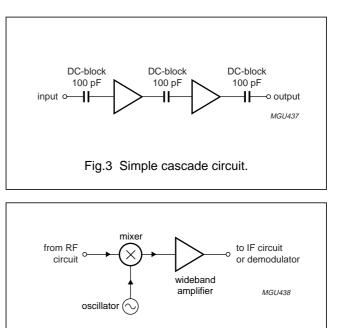
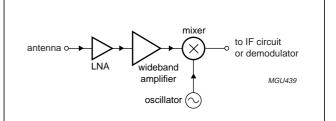
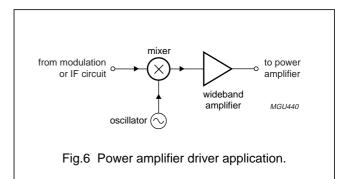
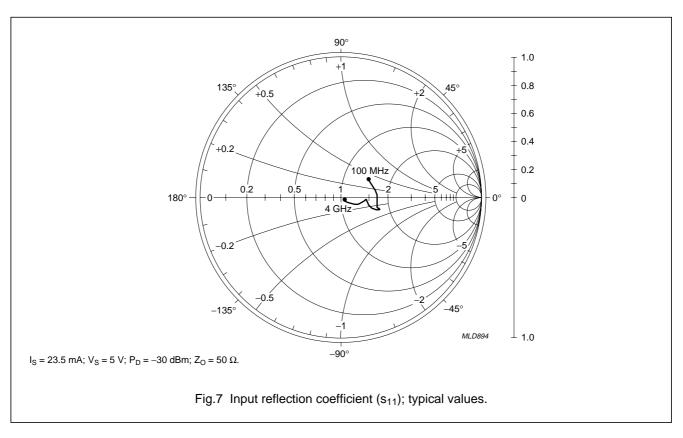



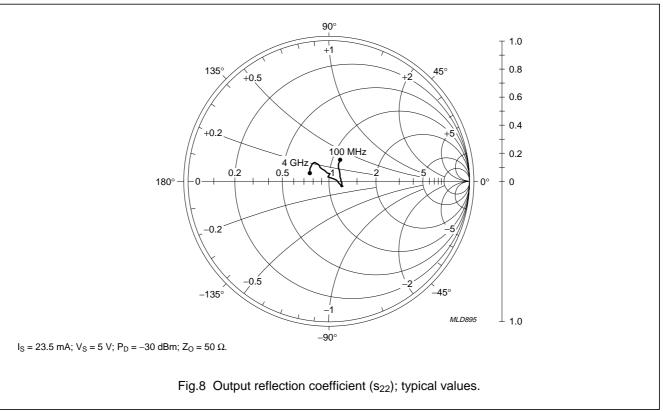
Figure 3 shows two cascaded MMICs. This configuration doubles overall gain while preserving broadband characteristics. Supply decoupling and grounding conditions for each MMIC are the same as those for the circuit of Fig.2.

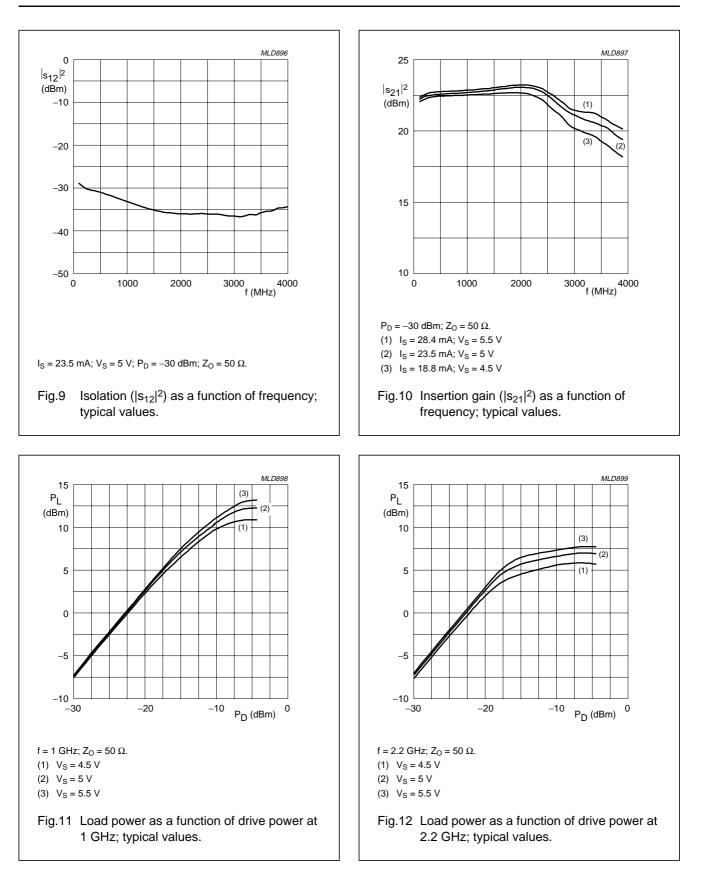

The excellent wideband characteristics of the MMIC make it and ideal building block in IF amplifier applications such as LBNs (see Fig.4).

As a buffer amplifier between an LNA and a mixer in a receiver circuit, the MMIC offers an easy matching, low noise solution (see Fig.5).

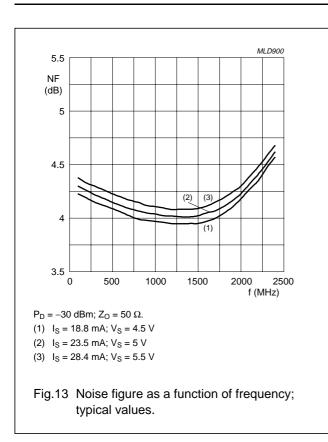

In Fig.6 the MMIC is used as a driver to the power amplifier in part of a transmitter circuit. Good linear performance and matched input and output offer quick design solutions in such applications.

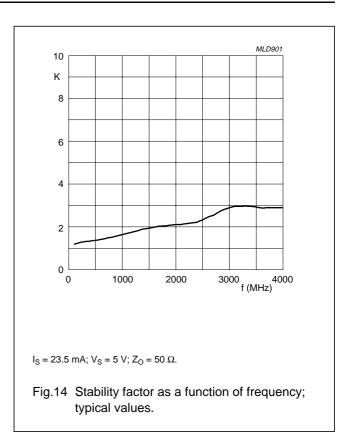






BGA2709





BGA2709

BGA2709

Philips
Semiconductors

BGA2709

	S ₁₁		S ₂₁		S ₁₂		S ₂₂		- к-
f (MHz)	MAGNITUDE (ratio)	ANGLE(deg)	MAGNITUDE (ratio)	ANGLE (deg)	MAGNITUDE (ratio)	ANGLE (deg)	MAGNITUDE (ratio)	ANGLE (deg)	FACTOR
100	0.23362	32.281	12.90523	21.565	0.036496	16.408	0.16296	61.578	1.2
200	0.25252	11.824	13.22858	4.852	0.032314	5.728	0.13501	60.573	1.3
400	0.25838	-2.149	13.43580	-10.31	0.029604	-5.865	0.10353	41.717	1.3
600	0.25990	-8.784	13.51088	-21.14	0.027122	-11.45	0.085075	16.95	1.4
800	0.26278	-12.76	13.56715	-30.93	0.024611	-15.08	0.088892	-1.879	1.5
1000	0.26695	-14.88	13.65916	-40.37	0.022107	-16.33	0.09716	-13.36	1.7
1200	0.27404	-16.30	13.74736	-49.83	0.019986	-15.67	0.10279	-20.25	1.8
1400	0.27921	-16.51	13.85661	-59.47	0.018217	-13.42	0.10385	-23.24	1.9
1600	0.28486	-16.78	14.03414	-69.50	0.017049	-9.927	0.099148	-24.08	2.0
1800	0.28749	-17.25	14.16012	-80.23	0.016409	-5.968	0.089633	-20.58	2.1
2000	0.28601	-17.76	14.23586	-91.65	0.015912	-2.04	0.076785	-14.48	2.1
2200	0.27487	-18.98	14.14430	-103.9	0.015829	1.077	0.062455	-4.507	2.2
2400	0.25176	-19.94	13.70546	-117.0	0.016054	3.361	0.044552	11.808	2.2
2600	0.21405	-17.09	12.75365	-129.7	0.015801	3.145	0.023668	98.126	2.5
2800	0.19288	-11.85	11.96153	-138.7	0.015406	7.602	0.057779	104.35	2.7
3000	0.18347	-6.228	11.33015	-147.6	0.015049	11.411	0.094848	119.98	2.9
3200	0.17459	-6.327	10.94943	-156.3	0.015098	15.52	0.12948	123.28	3.0
3400	0.15344	-14.14	10.65459	-167.3	0.015529	20.649	0.15325	126.56	3.0
3600	0.10799	-26.12	10.28106	-179.1	0.017107	23.92	0.16627	131.67	2.8
3800	0.05984	-39.66	9.56897	170.0	0.018529	23.226	0.16317	140.54	2.8
4000	0.025953	-28.87	8.97718	157.3	0.019276	18.403	0.14602	157.03	2.9

S12

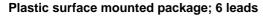
S₂₂

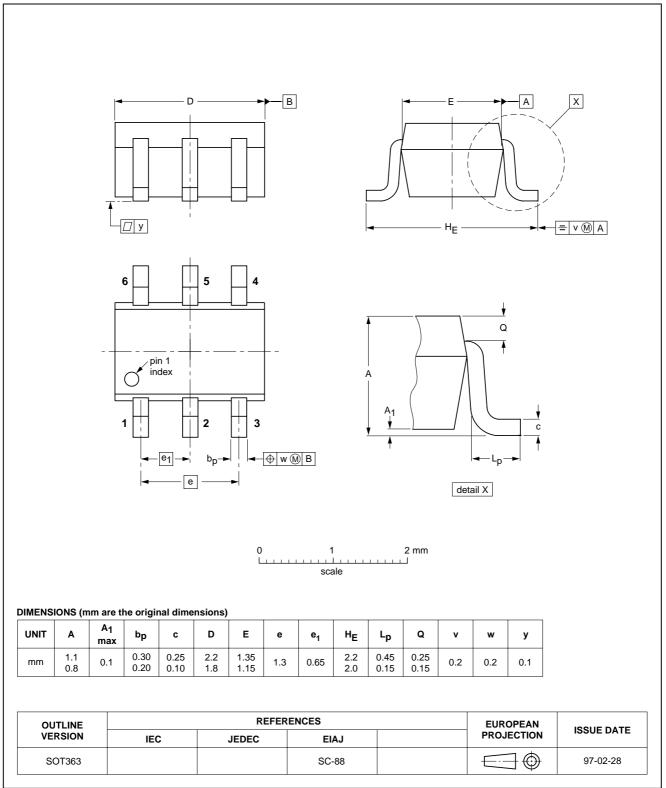
Table 1 Scattering parameters: $I_S = 23.5 \text{ mA}$; $V_S = 5 \text{ V}$; $P_D = -30 \text{ dBm}$; $Z_O = 50 \Omega$; $T_{amb} = 25 \text{ °C}$

S21

S₁₁

2002 Aug 06


_


ω

BGA2709

MMIC wideband amplifier

PACKAGE OUTLINE

SOT363

BGA2709

DATA SHEET STATUS

DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

BGA2709

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613516/02/pp**12**

Date of release: 2002 Aug 06

Document order number: 9397 750 10019

SCA74

Let's make things better.

Philips Semiconductors